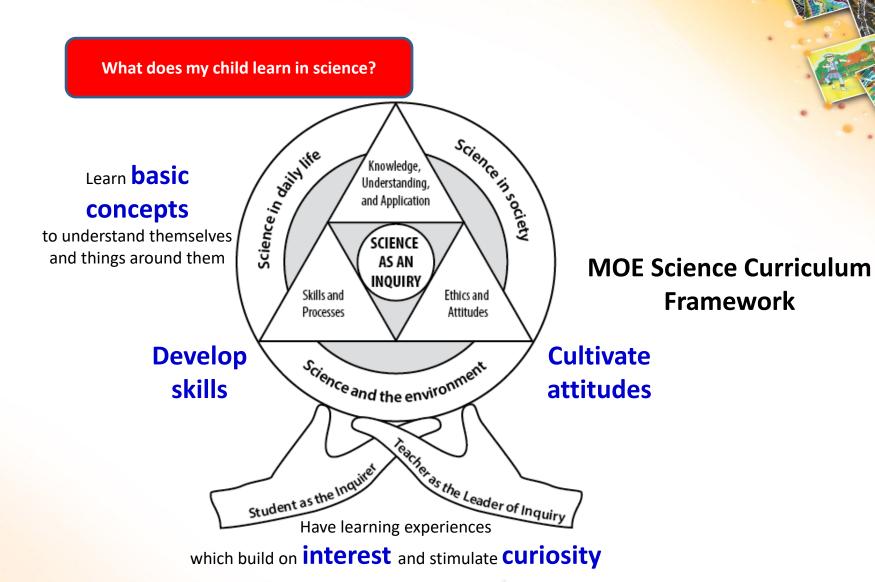


Mr Ong Wee Leong
HOD Science

ong_wee_leong@moe.edu.sg

Mrs Clara Kang
LH Science
ang_yan_qing_clara@moe.edu.sg



HGS SCIENCE DEPARTMENT VISION

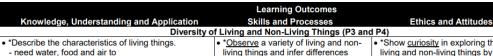
To nurture and develop every HGS girl with an inquiring mind for Science

What does my child learn in science?

2014 Science (Primary) Syllabus

For more details, visit the link :

 https://go.gov.sg/moeprimarysciencesyllabus 2014


Science Syllabus

Primary

Implementation starting with 2014 Primary Three Cohort

© 2013 Curriculum Planning and Development Division This publication is not for sale. All rights reserved. No part of this publication may be reproduced without the prior permission of the

*Classify living things into broad

on similarities and differences of

common observable characteristics.

- survive - grow, respond and
- reproduce
- *Recognise some broad groups of living things. - plants (flowering, non-flowering)
- animals (amphibians, birds, fish, insects, mammals, reptiles)
- fungi (mould, mushroom veast)
- bacteria

 Recall of names of specific living things (e.g. guppy) and their characteristics (e.g. give birth to young alive) is not required.

- *Show <u>curiosity</u> in exploring the surrounding living things and infer differences living and non-living things by asking between them. questions.
- *Value individual effort and team work by groups (in plants and animals) based respecting different perspectives.

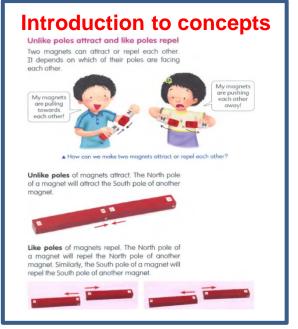
What does my child learn in science?

Themes	Lower Block (P3-P4)	Upper Block (P5-P6)
Diversity	Diversity of living and non-living thingsDiversity of materials	
Cycles	Life cycles of plants and animalsCycles in matter	Reproduction of plants and animalsCycles in water
Systems	 Plant System (Plant parts and functions) Human System (Digestive system) 	 Plant Transport System Human Respiratory and Circulatory Systems Cell System Electrical System
Interaction	Magnets	Interaction of forcesInteraction within the environment
Energy	Energy Forms and Uses (Light and Heat)	Energy Forms and Uses (Photosynthesis)Energy Conversion

2014 Primary Science Syllabus: https://moe.gov.sg/education/syllabuses/sciences

Inquiry-Based Learning Approach

	Engaging with an event, phenomenon or problem through:	Collecting and presenting evidence through:	Reasoning, Making meaning of information and evidence through:	
Skills	 Formulating hypothesis Generating possibilities Predicting 	ObservingUsing apparatus and equipment	 Comparing Classifying Inferring Analysing Evaluating 	
	Communicating			
Processes	Creative problem-solving, Investigation and Decision-making			



Making links between concepts mapped Magnets North-South direction when freely suspended Composes Haig Girls' Scho

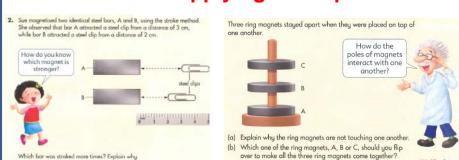
How does my child learn science?

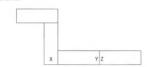
✓ Using Textbooks and Workbooks

Exploring through hands-on activities

Procedure

A. Poles of a bar magnet

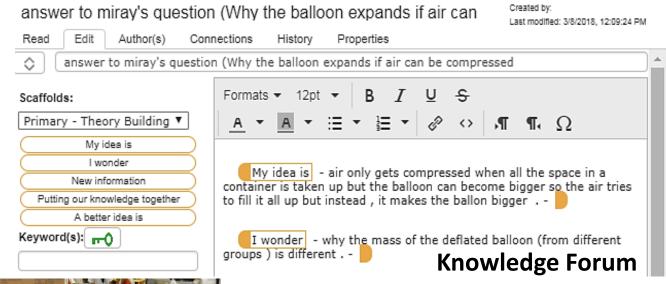

1. Draw a bar magnet and label its North and South poles in the space provided below.


2. Place two bar magnets end to end. What do you notice about the magnets when the ends of the magnets are placed near each other? Draw your observations below.

N	S	N	S
N	S	S	N
S	N	N	5

Applying concepts in various contexts

1. The diagram below shows four bar magnets that are attracted to


Which of the following represents the poles at X, Y and Z correctly?

- 8	_ ^		-
(1)	North	North	North
(2)	North	South	South
(3)	South	South	North
(4)	South	South	South

✓ Use of innovative pedagogies to engage our pupils (Knowledge building, Knowledge Forum, Drama in Science, Assessment for Learning strategies)

Co-operative strategies

Drama in Science

Magnetism Kit

Science Magnetism Kit Activity Booklet

Name:	 ()
Class: P3		

✓ Zoo Learning Journey (via Zoom) in Term 1 to support their learning of Diversity (Animals)

ANSWERING STRATEGIES

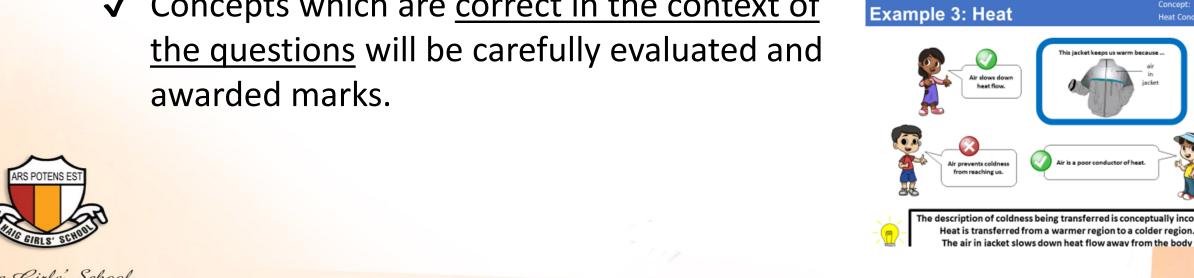
RHCTC

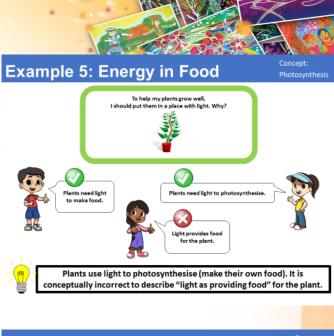
Read everything, then Highlight Clues, link to Topic and Concept learnt

CER

Claim Evidence A Reasoning evidence can be given in question, pictures, table or graph

Encourage annotations to organize their thoughts.


- ✓ Elimination for MCQ
- ✓ CER for Open-Ended Questions


Answers must be supported by evidence.

Note: Students still need to know their science concepts well!

- Conceptual understanding and application of concepts and skills
- ✓ Students can explain their understanding of concepts in their own words.
- ✓ Concepts which are correct in the context of awarded marks.

2022 Holistic Assessment Overview

Assessment of Learning			
	Term 2	Term 3	Term 4
	Weighted Assessment 1	Weighted Assessment 2 (Performance Task)	End of year Examination
Total marks	20 marks	15 marks	70 marks
Duration	30 min	-	1h 15 min
Weighting	15%	15%	70%

BOOKLET A	Multiple-Choice Questions (MCQ)	2 marks each
BOOKLET B	Open-Ended Questions (OEQ)	2, 3, 4 marks each

Science Paper Exam Format (WA1 and EOY)

Booklet A	Booklet B
Multiple- Choice Questions (MCQ)	Open-Ended Questions (OEQ)
2 marks each	2, 3 or 4 marks each
5 N/CO	5 OFO

Weighted Assessment 1	5 MCQ	5 OEQ	Total:
	(10 marks)	(10 marks)	20 marks
End of Year	20 MCQ	10 OEQ	Total:
Examination	(40 marks)	(30 marks)	70 marks

Weighted Assessment 2 (Performance Task)

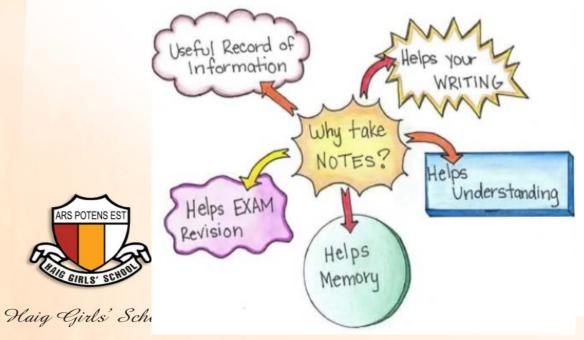
Provide students with opportunities to apply critical thinking and problem solving skills, understanding of concepts of materials and demonstrate their creativity in selecting appropriate materials to create a product using

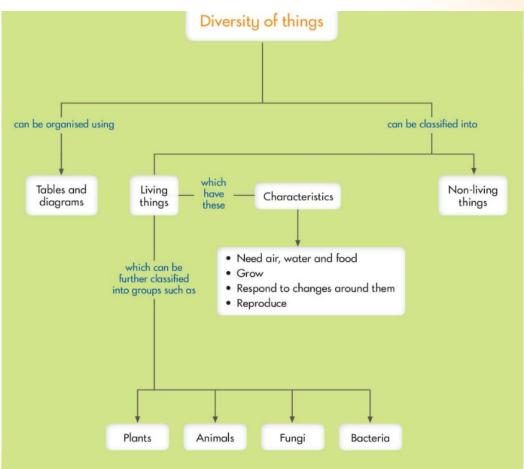
materials provided.

- ✓ Activating Prior Knowledge
- ✓ Arousing Interest
- ✓ Encouraging Learner Engagement
- ✓ Exercising Flexibility

Assessment for Learning (Ongoing monitoring)

- Science Activity Book
- Mastery worksheets
- Topical self-assessment
- Practice papers
- Hands-on activities with use of scientific skills / process skills
- Science Journal
- Traffic lights
- Mini Whiteboard
- Teacher's classroom observations
- Exit Cards




Help your child track her learning

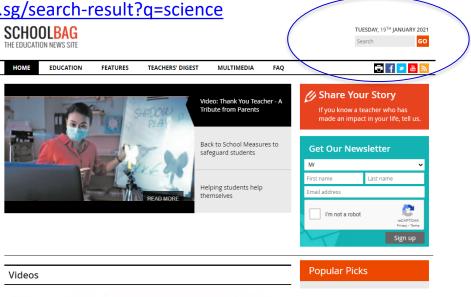
- Work with and guide your child in planning her revision schedule.
- Check her handbook to <u>monitor</u> her homework and corrections
- Support your child's online learning, e.g. SLS assignments, online research

- 2. Help your child revise and retain her science concepts.
- ✓ Note-taking
- ✓ Concept Maps
- ✓ Labelled diagrams

Other forms of support you can provide

- ➤ Promote Science learning by:
 - going outdoors (e.g. Zoo, Gardens by the Bay,
 Singapore Science Centre, Gardens by the Bay etc)
 - exploring relevant YouTube videos
 - reading Science related magazines
 - watching Science related TV programmes etc
- ➤ Reinforce scientific concepts by providing real-life examples (incidental learning)
- Try out experiments at home ("kitchen science")

Resource for parents


Useful link for parents https://www.schoolbag.sg

Schoolbag.sg is an online publication by the Ministry of Education, Singapore. It provides parents, educators and the general public with education news, school features and tips.

Use the search function and search science:

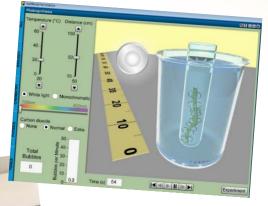
https://www.schoolbag.edu.sg/search-result?q=science

SCHOOLBAG THE EDUCATION NEWS SITE

How do you make kids love science? You don't

https://www.schoolbag.edu.sg/story/how-do-you-make-kidslove-science-you-don-t

- 1. Get them intrigued
- 2. Make it about them
- 3. Keep it fun
- 4. Show your passion
- 5. Get them thinking



School's Support in our Pupils' Learning

- ✓ School laboratories 1 & 2
- ✓ Resources for hands-on activities (dataloggers, science kits)
- ✓ Environment as the 3rd teacher: Solarpowered Hydroponics, Science garden, EcoPond
- ✓ Use of ICT (SLS, virtual experiments, Padlet)

School's Support in our Pupils' Learning

- ✓ Remedial for selected students
 - *P3 Science remedial to start in Term 2
- ✓ Science magazines and books (available in the school and class libraries)
- ✓ Young Scientist Badge Scheme (digital) : Self-directed learning

Thank you for your attention!

Science HOD: Mr Ong Wee Leong

ong_wee_leong@moe.edu.sg

Science LH: Mrs Clara Kang

ang_yan_qing_clara@moe.edu.sg

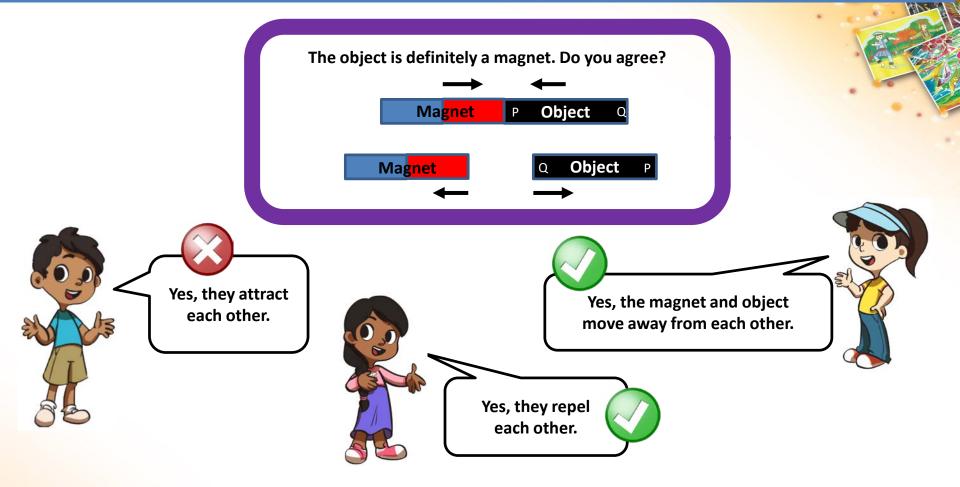
Class	Teacher	Email address
3C	Mdm Farhana	nur_farhana_ramlan@moe.edu.sg
3G	Mdm Celest	celestina_sharmini_m@moe.edu.sg
3H	Mdm Radiah	radiah_mohamed_ali_jinnah@moe.edu.sg
3J	Mrs Fong	yer_lay_keow@moe.edu.sg
3K	Mdm Noraini	noraini_riffin@moe.edu.sg

Conceptual
Understanding
in Primary Science:
Examples and Applications

2022

Conceptual Understanding in Primary Science

- Students learn Science through understanding and applying concepts and skills in different contexts in an age-appropriate manner.
- The focus of learning Science is not on giving "standard answers" or keywords. Students can show their understanding by using their own words to explain clearly in the context of the question.
- Science is alive and its applications are all around us.


Examples and Applications in Different Contexts

Example 1: Magnets

Concept:

Magnetic Repulsion

If the object is only attracted by a magnet, it may just be a magnetic material. There is insufficient evidence to conclude that the object is a magnet. The object is definitely a magnet only if it repels a magnet.

Example 1: Magnets

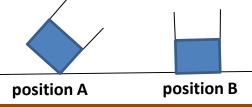
Applications in daily life

Magnets help us in our everyday life!



There are magnets in my toy!

Magnets help us to separate the magnetic materials in our rubbish too.



Haig Girls' School

Example 2: Matter

Concept:
Properties of Matter

A substance is put in a container.
The container is placed in positions A and B below.
The object is definitely a solid. Do you agree?

-(X)

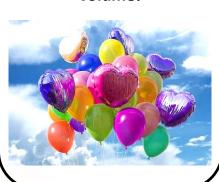
Yes, it is a solid because it takes up the same amount of space in positions A and B.

Yes, the substance has a fixed shape and volume in both positions A and B.

Yes, the substance did not change its shape in position A.

If the substance only takes up the same amount of space in the container, it may be a liquid.

There is insufficient evidence to conclude that the substance is a solid.

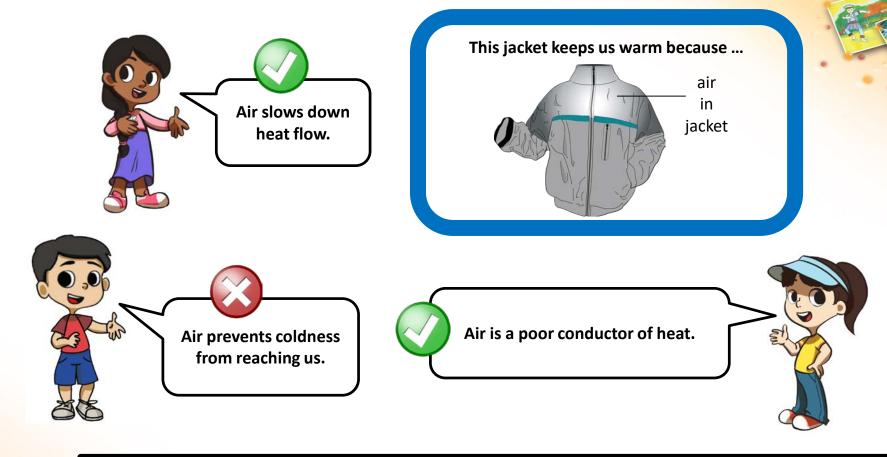

The substance is definitely a solid if it has a definite shape and volume.

Properties of solids, liquids and gases are applied in our everyday life.

We can fill balloons of different shapes and sizes as gases have no definite shape and volume!

Water takes the shape of the containers as it has no definite shape.

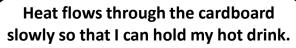
We can also have ice sculptures in cold environment as ice has a definite shape and volume.



Example 3: Heat

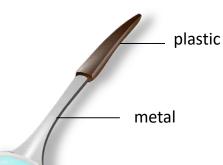
Concept: Heat Conduction

The description of coldness being transferred is conceptually incorrect.


Heat is transferred from a warmer region to a colder region.

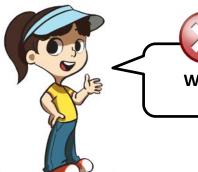
The air in jacket slows down heat flow away from the body rather than prevents coldness from reaching us.

Some objects are better conductors of heat so they allow heat to flow through faster than others. What are some examples of heat flow in our everyday life?


Heat flows through the metal pot quickly to cook our food.

Some objects are made of both good and poor conductors of heat, such as the soup ladle.

I can hold the plastic handle safely when getting my hot soup.


Haig Girls' School

Example 4(a): Water Cycle

Concept: **Evaporation**

There are water droplets on the leaves in the morning. They are not there after a while. Why?

Water has disappeared!

Water has evaporated.

Water didn't disappear. It evaporated.

Conceptually, it continues to exist, except in a different state. **'Water has disappeared' does not explain what happened to the water. Evaporation** happens when water changes from liquid to gas.

Example 4(b): Water Cycle

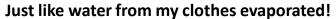
Concept: Evaporation

There are water droplets on the leaves in the morning.

They are not there after a while. Why?

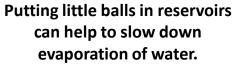
Water has changed from liquid to air.

Water has become water vapour.


Air is made up of different gases including water vapour. So it is a misconception that water vapour is air.

Example 4: Water Cycle

Applications in daily life



can help to slow down evaporation of water.

And water by the road evaporating!

RS POTENS E

Example 5: Energy in Food

Concept:
Photosynthesis

To help my plants grow well, I should put them in a place with light. Why?

Plants use light to photosynthesise (make their own food). It is conceptually incorrect to describe "light as providing food" for the plant.

Example 5: Energy in Food

Applications in daily life

Photosynthesis is important ...

During photosynthesis, plants provide us with oxygen!

Plants photosynthesise to make food for themselves.

When there are more plants, more carbon dioxide in the air will be taken in by the plants during photosynthesis. With less carbon dioxide in the air, this in turn helps to reduce global warming!

Thank you

